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An extension is made of the a-effect model of the earth’s dynamo into the nonlinear 
regime following the prescription of Malkus & Proctor (1975). In  this model, the 
effects of small-scale dynamics oh the a-effect are suppressed, and the global effects 
of induced velocity fields examined in isolation. The equations are solved numerically 
using finite-difference methods, and it is shown that viscous and inertial forces are 
unimportant in the final equilibration, as suggested in the above paper. 

1. Introduction 
In  a recent paper, Malkus & Proctor (1975, hereinafter referred to as I) have 

proposed that the constraints that limit the growth of the magnetic field of the earth 
are global in nature and relatively insensitive to the detaiIs of the magnetic regenera- 
tion process. It is noted there that the primary force balance in the core of the earth 
is between Coriolis and Lorentz forces and the pressure gradient, with viscous and 
inertial forces playing a secondary role. If the regenerating mechanism is relatively 
insensitive to the growth of the field, the change in the global flow pattern produced 
by the Lorentz forces should lead to final steady values of the magnetic energy 
which are O(slh,up), where is the angular velocity of the core, h the magnetic 
diffusivity and ,u and p the magnetic permeability and density, respectively, of the 
core fluid. The quantitative analysis of I was confined to the special case a = constant 
of the ‘a-effect’ that models magnetic energy input to the large scales (see I for 
references). Two regimes are considered there: the ‘viscous limit ’, valid at small field 
amplitudes, in which viscous effects determine the final equilibration, and the ‘inviscid 
limit ’, valid for larger fields, when Ohmic loss is the principal equilibrating mechanism. 
We have discovered errors in the analysis for the latter regime. Specifically, it  is 
proved that the equations in the former case have no steady solution, at third order 
in the expansion parameter, so that figure 3 of I is incorrect. This means that for 
a = constant viscous forces are always important in determining the eventual field 
size if the solution is steady (although an inviscid oscillatory solution cannot be 
ruled out). 

Solutions to the inviscid problem have been exhibited, however, in certain special 
cases (Greenspan 1974; Proctor 19751, and the non-existence proof noted above 
(details of which are in Proctor q.v.) holds only if a is independent of the co-ordinate 
parallel to the rotation. Since no realistic form of a satisfies this constraint, we expect 
that solutions exist in most cases of physical relevance. The model investigated here 
is one such, and the results we obtain demonstrate the approach to the inviscid limit 
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as viscous and inertial forces become small. Further, this is the first numerical study 
of the a-effect dynamo equations that is neither confined to the linear regime (e.g. 
Roberts 1972) nor based on a physically plausible, but arbitrary parameterization of 
the dynamics (Jepps 1975). Here we suppose a to be a given function, thus suppressing 
the small-scale consequences of the change in the mean fields to accord with the ideas 
in I on the importance of global constraints. The equations to be investigated are 
then those that relate the mean magnetic field t o  the large-scale flows induced by the 
mean Lorentz forces. 

In  the notation of I, these take the form 

aB/at = V x (U x B) + V x (af B) + V2B, 
E,(aU/at + U .  VU) + Vp + 2k x U = V x B x B +EV2U, ( 1 . l b )  

Q .B  = V.U = 0, 

where af is the presumed magnetic energy source due to small-scale effects, B is the 
magnetic field, U the induced large-scale velocity field and p the pressure. The two 
dimensionless parameters E and EM are given by 

( l . l a )  

( l . lc)  

E = V/QL2, EM = h/RL2, (1.2) 

where L is the core radius. Both these numbers are thought to be extremely small for 
the core (10-6 or less). Because of this, an immediate decision had to be made: whether 
to retain the small terms in E and EM or whether to attempt to solve the reduced 
equations obtained by neglecting these terms. The first path has the advantage that 
the equations are fully predictive, and so permit the full initial-value problem to be 
solved, a t  least within the restrictions imposed by the numerical scheme. Its  dis- 
advantage lies in the fact that, because of the small coefficient multiplying aU/at, 
the time stepping must proceed very slowly to accommodate any effects with a small 
time scale that may arise. On the other hand, the second path has the advantage that 
there are now no small time scales, so that the computation can proceed much more 
rapidly, but the equations are no longer predictive, so that an arbitrary initial state is 
not permitted. Specifically, the reduced version of (1 .1  b ) ,  

admits solutions for U if and only if 
V p + 2 k x U = V x B x B ,  (1.3) 

(V x B x B),d#dz = 0, (1.4) 

where C(s) is any cylinder of radius s coaxial with the angular velocity vector k 
(Taylor 1963). Hence (1.4) must be satisfied by any initial state, and remains true for 
all time. Although such an initial-value problem can certainly be formulated, there 
is some doubt as to whether a state in which (1.4) is satisfied can ever be attained from 
a general initial configuration. Roberts & Stewartson (1975) have suggested that the 
‘Taylor state’ may well be unstable under some circumstances, leading to persistent 
oscillations on a fast AlfvBn-wave time scale. 

With these observations in mind, we decided that a first study of these equations 
should include all the terms. We chose a simple form off (cos 8 )  that was antisymmetric 
about the equator z = 0, arid by varying the parameters E and EM for this case, we 
could establish whether an asymptotic state was attained as E ,  E ,  + 0,  and acquire 
some information about the stability of this state. The magnitude of a was taken as 

s CYS) 



Numerical solutions of the a-effect dynamo equations 771 

known and independent of the magnetic energy in the large-scale field. This was done 
in order to study the large-scale equilibration effect in isolation, since a correct 
parameterization of the effects of a on the large-scale field is not available, and it seems 
likely that the relative importance of the two mechanisms depends on the type of 
small-scale forcing used. [The most recent work is that of Busse (1975), who has 
shown that a modified, anisotropic a-effect can result from small-scale convection in 
a rotating fluid, and has found an equilibration based on changes in the effective a. 
In his model, however, there are no large-scale motions at all,? although it can be 
proved (Proctor 1975) that they must occur in a contained body of fluid.] Thus the 
work presented here is but one side of the coin: a full synthesis lies in tahe future. 
Specifically, we examined three cases: (E ,Enf )  = (1.0, l - O ) ,  (0.1, 0.04) and (0.005, 
0.0025). It was hoped that the last of these cases would be well into the presumed 
asymptotic range prevailing in the geodynamo. For each case, the equations were 
solved for various values of a by marching forward in time from some initial state 
until a steady state was reached. Contour plots of the various magnetic and velocity 
fields involved were produced at  given intervals. The magnetic energy M of the toroidal 
field, used as a measure of the amplitude of the system, was monitored at  every time 
step, so that the approach to the steady state could be examined. 

Section 2,  then, contains a formulation of the numerical problem and details of the 
finite-difference scheme used to solve it. Section 3 contains a description of the results 
obtained in the three cases, and in Q 4 the results are evaluated and work in progress is 
described. Before proceeding with this programme, we may briefly anticipate the 
conclusions. These are that an asymptotic state in which Taylor’s condition holds 
does indeed occur, and that it appears to be stable, although perhaps not asymptotic- 
ally stable in the third case considered. Although the computations are all in the 
weakly nonlinear range, so that the magnetic field is not much altered by changing a, 
the evolved velocity fields show great differences depending on the relative importance 
of Coriolis and viscous forces; there is no evidence, however, of the magnetic boundary 
layer and large zonal flows proposed by Braginskii (1975, 1976) as an alternative to 
Taylor’s prescription. 

2. Formulation and numerical methods 
Formulation 

We seek axisymmetric solutions to (1 .1  ) within a sphere of radius 1.  In order to specify 
the problem fully, we need boundary conditions at  the surface r = 1.  We suppose that 
the boundary is stress free; t.his condition is chosen to minimize the effects of viscosity. 
The boundary condition on the magnetic field is obtained by supposing that the 
exterior of the sphere is electrically insulated; that is, V x B z 0 in this region and 
IBI = O(lrl-3) as Irl --too. B is continuous across the interface JrI = 1.  We must now 
write ( 1 . 1 )  in a manner that will facilitate computation. As in I, we set 

B = bh, + V x (ah,), ( 2 . 1 ~ )  

u = vh, + v x (@&, (2.1b) 

(2 . lc)  v x u = uh, + v x ( V h , ) ,  

t This does not violate the consist.ency of Busse’s results, since his model is unbounded at 
leading order. 
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where Q, is a unit vector in the q5 direction. (This representation uses the solenoidality 
of U and B.) We may now ‘uncurl’ the meridional part of ( 1 . 1 ~ )  and eliminate p by 
taking the curl of the meridional part of (1.1 b ) .  These give 

and 
aa/at = N($,  a)  + af b + D 2 a  ( 2 . 2 4  

- =M(v,v)  -M(u,$)  + Eg 2% + ED% -M(b ,  b)  - M(D%, a)  , 
aw 
at 

(2.2b) [ av 1 
where D2 = V2 - l / r 2  sin2 8 and the nonlinear terms take the form 

N ( x ,  9) = 66. (V x (~6,) x V x (ye,)), 
M ( s ,  y) = 6,. v x (xe, x v x (ye,)). 

The remaining three equations come from the q5 components of (1.1 a, b ) ,  i.e. 

(2.4) I ab/at = M(w, a)  - M ( b ,  $) +aV x (f V x (ae,)). 6, + D2b, 
av/at = N($,  W )  + Ek1[2 a$/az + ED% + N(b,  a)] ,  

and the elliptic equation connecting $ and w ,  i.e. 

w = - D2$. 

For Irl 2 1 ,  the zero-current condition implies 

D2a = 0, b = 0 .  

The boundary conditions can therefore be written as 

a,b,w,r ,$-+O as Irl+O, 

[a] = [aa/ar] = 0 across r = 1 ,  

b = $ = O ,  G ( - )  a v  = 0 ,  w = 2 -  a$ on r = l .  
ar 

The condition on $ implies no normal velocity on r = 1 ,  and the conditions on w and w 
represent the boundary condition of zero tangential stress. 

The problem (1.1) has now been reduced to four one-component parabolic equations 
and one elliptic equation. It should be noted that there are only two types of nonlinear 
term and only one type of diffusive term when the equations are expressed in this 
way. These convenient results are used in the program. 

Numerical methods 

It may be directly observed that it is necessary to solve (2 .2) ,  (2 .4)  and (2 .5)  only 
in the hemisphere z 2 0. This is because, for f an odd function of z, the solutions can 
be divided into dipole (a, w even; b, $, w odd) and quadrupole modes. Hence the region 
z < 0 can be replaced by suitable symmetry conditions a t  the ‘equator’ z = 0 (8 = in). 
We consider only dipole modes in the present study. 

All the variables are held at  the nodes of a polar co-ordinate mesh with spacing 
(Ar ,A8) ,  where Ar = 1/N and A0 = n/2N.  The time step is denoted by At. The 
equations are solved by replacing them with finite-difference analogues that are 
centred in space and time and have second-order accuracy. The linear terms were 
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constructed according to the principles of Moore, Peckover & Weiss (1973, hereinafter 
referred t,o as MPW), using a centred leapfrog scheme for the time derivative and a 
formulation for the diffusive term analogous to the DuFort-Frankel scheme for 
Cartesian meshes. This scheme is explicit, unconditionally stable, and accurate if 
At < t(  1 + 4/+)-1Ar2. We were unable to find conservative formulations for the 
nonlinear terms that are accurate near r = 0. The difficulty resides in the averaging 
procedure of MPW when applied to a non-Cartesian mesh. Details of this problem 
are given in Proctor (1975). We resolved the difficulty by choosing schemes that were 
accurate but not conservative for the nonlinear terms. All the schemes used are given 
in appendix A. In  contrast to MPW, and to Weir (1976), who use a staggered mesh, 
we hold all variables at  all points of the mesh. This avoids any difficulties of implement- 
ation on the axis, and makes the use of the non-local boundary condition on a much 
simpler. 

The elliptic equation for $ is solved by successive over-relaxation a t  each time 
step. The boundary condition on a can be cast into the form of a time-independent 
matrix that connects the values of a on r = 1 with those in the two adjacent shells. 
Full details of the method, originany due to P. H. Roberts, may be found in Proctor 
(1975) and Jepps (1975). 

The boundary condition on v has to be chosen to conserve angular momentum 
as well as possible (the difference scheme is not conservative, so that, although this 
quantity is an invariant of the full equations, it  is not conserved by their discrete 
form). To this end, we adopted a single-parameter family of relations connecting v 
at r = 1 with interior values, all of which were correct to second order. The free 
parameter was then varied for each run to minimize the drift of angular momentum. 
It should be noted, though, that as some drift did occur in spite of these precautions, 
the angular momentum contours produced by the program are not directly comparable. 
The steady state reached by the magnetic and poloidal velocity fields was unaffected 
by this problem. 

In actual implementation N was set to 20. All quantities were held at two time levels 
except @ (one level) and a (three levels). The three levels for a were necessary to 
ensure the correct representation of the last term in (2.2b) on the boundary; a dis- 
cussion appears in appendix B. For each run At was selected as the largest value 
compatible with the DufortFrankel criterion (see above) and the Courant-Friedrichs- 
Levy stability criterion 

where U is a typical advection velocity. Both these conditions become rather restrictive 
when E and E L  are small; At = & E& seemed to be sufficient for accuracy and 
stability. The program required 200k of store on the IBM 3701165 a t  Cambridge 
University; a typical time step took about 0.5-0.75s of computer time. 

The system was usually started from a previously evolved steady state with different 
parameters and was allowed to march forward in time until evolution had ceased. 
Contour plots were made of all the fields, using a program kindly supplied by Dr 
D. R. Moore. At the end of each run, a graph was drawn of M against time. This 
quantity was used in I as a measure of magnetic field strength. The results of these 
investigations are presented in the following section. 

UAtlAx < 1,  (2.8) 
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FIGURE 1. M as a function of a for caae (i). 

3. Results 
Preamble 

The results described in this section were all obtained for f = cos 0. This form off 
has the required antisymmetry about 8 = and is one of the models whose linear 
eigensolution was obtained by Roberts (1 972) in his comprehensive study of kinematic 
a-effect dynamos. 

An advantage of the model was that the magnetic fields produced were relatively 
slowly varying in space, so that only a moderate number of mesh points were necessary 
for an adequate representation. Almost all the other models treated by Roberts 
have the toroidal field confined to regions near the poles, with much greater average 
curvature. This model was solved for various values of a for three different pairs of 
values of EM and E :  

(i) EM = E = 1.0, 

(ii) E L  = 0.2, E = 0.01, 

(iii) E L  = 0.05, E = 0.005. 

In  case (i), the inertial terms and Coriolis terms in (1 .1)  are comparable and the 
viscous forces should dominate both these effects owing to the higher derivatives 
attached to the viscous term. The second and third cases were chosen so that Coriolis 
forces appeared dominantly in the scaling. If the solutions were similar in these two 
cases, support would be lent to the hypothesis that the system was near to an asymp- 
totic ‘magnetostrophic ’ state in which E ,  EM -+ 0 (as envisaged by the original scaling). 
This conjecture is, we ,believe, borne out by the results presented below. There are 
striking differences between the flow patterns in case (i) on the one hand and cases 
(ii) and (iii) on the other, which reflect the differences in the processes connecting the 
fields. 

In  every case, the marching process was continued until no further development 
occurred in times comparable with the Ohmic decay time ofthe system, and we believe 
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Poloidal 
field 

Angular 
momentum Streamlines 

FIGURE 2. Field contours for E& = E = 1.0 (case (i)). From left 
to right, contours of ar sin 0, b,  vrsin 8, o and $r sin 6. 

that our values for the equilibrium values of M are accurate to within three significant 
figures. 

In the following three subsections, we discuss the three cases in turn. Finally, in a 
conclusion, we synthesize our findings and evaluate their significance. 

Case (i): I& = E = 1.0 

Solutions were obtained for a = 8-0(0-5)9-5 according to table 1 below. The first case 
to be run was a = 8.5; it was started from a state of zero velocity and small magnetic 



776 M .  R. E .  Proctor 

t t 

FIGURE 3. Sketches of M as a function of time. (a) Case (i), increased a. (6) Case (i), 
decreased a. (c )  Case (ii), increased a. (d) Case (ii), decreased a. 

field approximating the linear eigensolutions. Other cases were started from the state 
for t,he next lower value of a except for the case a = 8.0, which was started from the 
state for a = 9.5 to  investigate a field decaying to its steady state. Figure 1 shows 
M as a function of a, figure 2 gives contours of the various fields in the steady state 
and figure 3 is a sketch of the typical time development of M .  In  each case, convergence 
was achieved after about 1200 time steps, or just over one Ohmic decay time; this high 
ratre is due to the importance of viscous decay in the' system (see below). It is clear 
from figure 3 that the equilibrium amplitudes are smoothly varying functions of a. 
A good fit to the plotted points is the parabola 

a = 7.67 + 0.0064M + 7.8 x 10-5M2 + . . ., (3.1) 

so that the intercept on the 01 axis is pleasingly close to the linear eigenvalue 7.65 
found by Roberts. It should be noticed that M is rather large compared with unity 
even for a as small as 8.0. This is a consequence of the fact that for this case viscous 
forces act as the principal balance to Lorentz forces (V2U = O(251UI) in this geo- 
metry). It is easily seen that the larger the value of E ,  the smaller the IUI needed for 
this force balance. Hence there is a weaker back-reaction on the field, which can thus 
grow to greater amplitude. Indeed, it is easy to show from the equations that in the 
limitE+mwemusthave,for IBI = O ( l ) ,  

a-a. = O(E-l) ,  IUI = O(E-l ) ,  {EU.V2U} = O(E-l) ,  (3.2) 

where a. is the eigenvalue of the linear problem. This rather paradoxical result shows 
the inconsistency of the model for large E,  since in reality a depends on the viscosity, 
and would presumably be zero for E sufficiently large. 
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&/ill (i) (ii) (iii) 
7.9 - 1.27 - 
8.0 36.2 1.41 1.42 
8.5 70.5 1.88 1.84 
9.0 96.4 2.26 2.08 
9.5 113.5 2.56 - 

10.0 - 2.93 - 
TABLE 1. Equilibrium values of M as a function of a in the three cases (i) Eil = E = 1.0, 

(ii) E& = 0.2, E = 0-01 and (iii) E h  = 0.05, E = 0.005. 

In the runs for which a was increased, the value of Movershoots its final equilibrium 
value before approaching it from below; the variation of a with time appears to be 
90" out of phase with that of b .  When CL was reduced to 8.0 for the final run, however, 
all the variables decayed monotonically to their eventual steady state. From the 
plots, it is clear that the maximum effects of the Lorentz force are at fairly low 
latitudes, leading to clockwise meridional flow for z > 0 and a region of reversed flow 
near the axis that would seem to play a passive role. There is a region of positive 
angular momentum near the equator, and a negative jet at  mid-latitudes near the 
boundary (which is, it will be recalled, stress free). This coincides with the place where 
gradients of both a and b are large. The case a = 8-0, run after the other three, shows the 
effect of angular-momentum drift, but it is clear from the other field contours that the 
drift does not make any difference to the equilibrium value. 

Case (ii): EL = 0.2, E = 0.1 

This case was the most comprehensively studied of the three considered. Runs were 
made for five values of a between 7.9 and 10.0. We found that this range took us out 
of the regime where the fields varied in size but not in shape, in contrast to case (i). In  
making the runs, At was set a t  0.0004; this was sufficiently short to allow proper 
resolution of one of the most interesting features of this case: damped oscillations 
about the steady state. As mentioned in $ 1 ,  these oscillations were predicted by 
Braginskii (1970), Roberts & Soward (1972) and Proctor (1975) as likely to occur 
during the process of setting up a state in which Taylor's condition is satisfied: the 
theory shows that they are torsional oscillations of concentric cylinders centred on 
the axis of rotation, with the radial field component B, acting as the link between the 
cylinders. The time scale of the oscillations predicted by the theory is E L  times the 
Ohmic decay time. 

In all five runs for this case oscillations in M were observed in the approach to the 
steady state (figure 3 shows a typical development). Their period is approximately 
0.8 E L ,  lending support to the hypothesis that they are of the Braginskii type. The 
fact that these oscillations are present at all provides powerful evidence that a 
magnetostrophic state is being approached, since there seem to be no other mechanisms 
permitted that allow oscillations on this fast a scale. The first run of this series (for 
a = 8-0) was started from an initial state of no motion, and the oscillations in this 
case were of an amplitude comparable with the steady-state values of M, remaining 
significant for four periods before disappearing owing to Ohmic and viscous loss. In 
the other runs, the oscillations, though of comparable period, were much weaker and 
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Poloidal 
field Vorticity Streamlines 

FIGURE 4. For legend see facing page. 
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Poloidal 
field Streamlines 

FIGURE 4. Field contours for cases (ii) and (iii). 

persisted for only one or two periods; in contrast to case (i), there seemed to be no 
difference in the character of the oscillations when a was decreased rather than 
increased. 

In table 1 we give the steady-state values of M as a function of a for this case. 
Contours of the evolved fields are shown in figure 4(a )  while figure 5 is a plot of the 
values in the table. 

Our f i s t  observation is that the equilibrium values of M are much smaller than for 
case ( i ) .  This shows, as anticipated, that the Coriolis forces are much more potent 
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FIGURE 5. M as a function of a. A, case (ii) (E& = 0.2, 
E = 0.01); 0 ,  case (iii) ( E L  = 0.5, E = 0.005). 

than viscous forces at  inducing equilibration. We can also see that M rises very rapidly 
from zero, initially, so that i f a  can be written as 

a = 7.65 + kM 
then k is very small. (It is most unlikely that k is exactly zero, since, as shown in I, 
k comes from the integral of an even function of z involving the linear eigensolution 
and its adjoint, which is not zero in general.) This seems to be a peculiar feature of 
the model we chose and it is therefore not well suited to the discovery of subcritical 
instabilities. For, as noted by Proctor (1975), for every function f giving k > 0, the 
case with f 3- f has k < 0, and hence is subcritically unstable. Fitting a parabola to 
the first three points the curve gives 

(3.3) 

(3.4) a = 7.55 - 0.25M + 0.426M2.. ., 
so it is possible that k is negative in this case. It would be pointless to make any 
stronger claim since no steady states have been obtained for a < 7.65. 

The most noticeable difference between the results for cases (i) and (ii) is that the 
velocity field in meridional planes has changed sign, a t  least away from the equator. 
The driving is now much more clearly concentrated at high latitudes, and the begin- 
nings of boundary-layer structure can be observed in the vorticity, indicating the 
secondary role that is beginning to be played by the viscosity. Most of the negative 
angular momentum is concentrated in two jets near the poles; as in case (i), there is a 
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region of positive angular momentum at the equator. At higher values of a, changes 
begin to appear in the meridional flow field. This is due to the increased importance of 
inertial forces in this range, as they are quadratic in IUI . The magnetic fields remain 
almost the same throughout. There is evidence of the z-independent structure 
associated with magnetostrophy, in the vertical tendency of contours of the angular 
momentum. Indeed, we should expect, a t  very low amplitudes, that this quantity 
would be almost independent of z since the largest component will be svo(s), the free 
geostrophic flow that results from Taylor’s constraint (see I). 

Case (iii): E h  = 0.05, E = 0.005 

This case was, we felt, close to the practical computing limits imposed by the disparity 
of time scales of the problem. In order to resolve all the phenomena occurring on a 
fast time scale adequately, we were forced to choose At = 0.0002, and about 1 h of 
computer time was required to achieve a steady state for each run. For these reasons, 
we examined only three values of a (8.0, 8.5 and 9.5). If the system is close to the 
asymptotic state where EL,  E 3 0 we should expect the equilibrium values for this 
case to be close to those for case (ii). This expectation was borne out by the results, 
at least for the smaller values of a, and we are therefore confident that an asymptotic 
magnetostrophic state exists for this form off. Table 1 shows the final value of M 
for each a; field contours are plotted in figure 4(b) and the values in the table are 
shown in figure 5 alongside those for case (ii). 

Clearly, the first two entries in the table are almost identical to the corresponding 
ones for the previous case. Comparison of the field contours for these two values of a 
shows that the meridional and azimuthal velocity fields are indeed almost identical; 
the boundary layer in the vorticity is now much more pronounced, showing clearly 
that the interior is effectively inviscid. The difference between cases (ii) and (iii) for 
a = 9-5 must be attributed to the effects of the U.  VU term. For case (ii), as we have 
seen, it is already dominating the dynamics at this value of a. Here, however, it is 
much less important since EM is only & as large. The contours show much less change 
with increasing a in this case; the only effect seems to be an increasing localization of 
the source of poloidal motions, and no region of reversed flow appears. 

An interesting aspect of this case was the occurrence of persistent oscillations at 
all values of a. These motions have frequencies of the order of 4 E d  and have typical 
amplitudes (as far as the variations in bz are concerned) of about 0.002. Since this is 
within the error margin of the finite-difference scheme, it is possible that these 
oscillations are due to some deficiency in the numerical method. However, there is some 
justification for thinking that they may represent a real lack of stability of the magneto- 
strophic state. The motions neither grew nor decayed appreciably during the entire 
course of each run. 

In  a recent paper, Roberts & Stewartson (1975) have argued that under some 
circumstances the state of magnetostrophic balance may be unstable to oscillatory 
disturbances. This may well be the cause of the motions observed here. Their analysis, 
however, held only for the case in which the oscillation time scale was of the order of 
the Ohmic decay time. In the present situation, i t  is hard to see how the fast oscillations 
can continue to extract energy from the motion since the time scales are so disparate. 
It would seem likely that the situation resembles that in the Boussinesq approxima- 
tion, which can be thought of as an average over times long compared with the 



7 82 M .  R. E.  Proctor 

acoustic travel time. Such a state is continually ‘unstable’ to acoustic disturbances, 
which act to transmit information on the pressure from one region to another. The 
Taylor oscillations could presumably play such a role here. The question remains 
open until the advent of analytical models that have validity in parameter ranges 
relevant to the earth. 

A final note should be added regarding the relation between the results presented 
here and the magnetic fields observed in the earth. There are many features missing 
from the model: a tilted dipole field and any westward drift are suppressed along with 
any azimuthal variations. Direct comparison of magnitudes is difficult since realistsic 
values of E and EM could not be used in the program. However, the parameter 
( SlApp)), measuring the field strength, is of the order of 30 G, so that we should expect 
that the earth’s field would be in the weakly nonlinear regime if the scaling were 
correct,. Velocity-field comparisons are difficult since we used free boundaries. A 
typical magnitude of the azimuthal velocity is lOh/L-lOOA/L, where L is the core 
radius: this gives speeds of the order of lcm/s, which is not incompatible with 
velocities inferred from the westward drift. Finally, if EM is taken as lo-’, typical 
time scales resulting from the proposed torsional waves would be of the order of 
decades, which again seems to coincide quite well with some frequencies in the 
variation of the length of the day. These concatenations clearly suggest the broad 
correctness of the balances proposed here and in I. 

4. Conclusions 
The model investigated here provides a first numerical study of the effect of the 

large-scale flow induced by a global magnetic field that was first investigated theo- 
retically by Malkus & Proctor (1975). It has been shown that if the dynamical effects 
of the small scales are suppressed the most potent element in the limitation of field 
growth is the balance between Lorentz and Coriolis forces, a t  least in parameter 
ranges relevant to the earth. This is in strong contrast to the recent prescription of 
Braginskii (1  975, 1976), who has argued that in the limit E M ,  E -+ 0 the asymptotic 
state is one of high toroidal shear and an absence of magnetic field perpendicular to 
the axis of rotation away from the boundaries. Our studies showed no such develop- 
ment, and the results for cases (ii) and (iii) show that the system is tending to a state 
in which Taylor’s condition is satisfied and viscosity is unimportant. One disappoint- 
ment in the work was its failure to distinguish the linear eigenvalue a0 from the new 
eigenvalue ainvlscld that results if E ,  EM -+ 0 and Taylor’s condition is required to 
be satisfied by the infinitesimal field (see I). This seems to be because Taylor’s con- 
dition appears (fortuitously) to be almost. satisfied by the linear eigensolution (values 
of Sb(i?u/az)dV for all three cases were of the order of O-OlM). (Some solutions to this 
problem have been obtained in a simplified geometry by Proctor 1975.) Further, 
the results suggest that the difficulties that appeared in the analysis of I are a con- 
sequence of the special form off that was chosen, and do not arise in general. 

The completion of this work opens up new and more exciting fields of endeavour. 
There are now several theories of magnetic field limitation in the earth, notably those 
of Busse (1  975) and Roberts & Stewartson (1975), both based on small-scale dynamical 
consequences, and our own alternative as adumbrated in I. The challenge now is the 
construction of a theory that includes both large- and small-scale dynamics in a 
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realistic parameterization that nevertheless avoids detailed treatment of the difficult 
problem of the small-scale processes in the core. A further area of interest is a solution 
of the present problem in the limit E,  E$ --f 0,  when Taylor's condition must be in- 
corporated from the outset. A study of this problem is at  present in progress. 

This research was performed while the author was a research student at Trinity 
College, Cambridge, England, and a preliminary report appears in his Ph.D. thesis 
(Proctor 1975). Grateful thanks are due to Dr H. K.  Moffa.tt for his help and encourage- 
ment while this work was in progress, to Prof. W. V. R. Malkus for suggesting the 
study, and to Dr N. 0. Weiss and Dr D. R. Moore for advice on numerical problems. 
The computations were carried out on the IBM 3701165 of the University Computing 
Service. Cambridge, England. Thanks are due to the Director for a generous allocation 
of resources. 

Appendix A. Finite-difference representations 

to the DuFort-Frankel scheme 
All the diffusive terms in the equations were represented by a scheme analogous 

d2bF/dx2 = [b,"+l+ bT-l - b?+' - b?-l]/(Ax)', (A 1) 

which is known to be unconditionally stable. The present scheme is derived from the 
ideas of MPW, using the fact that 

D2a = - v x v x (ae,). e,. (A 2) 

Applying the curl operator twice by integrating round a circuit centred on the point 

where 

and a; = a(iAr,jA8; nAt), etc. 

This scheme gave linear decay rates correct to four decimal places when used with 

The two nonlinear terms had to be expressed in naive non-conservative forms so 
N = 10. 

as to avoid the inaccuracies mentioned in Q 2. The schemes finally decided on were 

N(a ,  b); = [V x (ae,) x v x (be,) .  e,]; 
= (4rq ArAB)-' - bzj- l  + 2A8~0t  8, b;) [ri(aT+l,j - u;-~ ,~)  + 2Ar@j] 

- (a&+l -a&-1 + 2 6 8  cot Bja;) [ri(b?+l,j - bFPl,J + 2Arb;]}, (A 4) 

M(w,  b); = [V x (we, x v x (be,) .  e,]; 
= (4rihrA8)-l [ ( w ? + ~ , ~ - u ~ - ~ , ~ )  n (bzj+l-btj-l-  2A8cotOjb6) 

+ 2A8 cot Oj w; (bT+l, - b?-l, j )  - (2Ar/ri) w;(bX j+l - b&-l) 

- ( ~ T j + l -  ~ i .  n j-1) (bF+l,j -bT-l,j + (2Ar/ri) b,",)I* (A 5 )  



7 84 M .  R. E .  Proctor 

Appendix B. Treatment of the Lorentz forces 

tion of the term 
In implementation of the finite-difference formulation, a difficulty arises in evalua- 

N(D2a, a )  (B 1) 

in ( 2 . 2 b ) .  Although this is in standard form, direct evaluation for r = 1 - Ar is not 
possible since the scheme does not define D2a at  the boundary. Neither is extra- 
polation possible, since D2u is discontinuous at r = 1. For this reason, (B 1) was 
replaced by 

by substitution in ( 2 . 2 ~ ) .  This expression can be calculated everywhere since N ( $ ,  a )  
contains only first derivatives and can therefore be evaluated correctly by using 
backward difference formulae at the boundary. The only adverse consequence of 
using (B 2) is that the variable a must be held at  three time levels instead of two; 
this is not a serious drawback in practice. 

- il!!(afb, a) - M ( N ( $ ,  a) ,  a )  4- M(aa/at, a )  (B 2) 
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